# FRET SUBSTRATES BACHEM LEADING PARTNER IN TIDES



# FRET SUBSTRATES OFFERED BY BACHEM

Fluorescence Resonance Energy Transfer (FRET) is the non-radiative transfer of energy from an excited fluorophore (or donor) to a suitable quencher (or acceptor) molecule. FRET is used in a variety of applications including the measurement of protease activity with substrates, in which the fluorophore is separated from the quencher by a short peptide sequence containing the enzyme cleavage site. Proteolysis of the peptide results in fluorescence as the fluorophore and quencher are separated. In this brochure we present a range of highly sensitive FRET protease substrates for a variety of enzymes.

#### Introduction

Fluorophores are substances which, like chromophores, absorb light in the UV or visible range. In contrast to chromophores they re-emit part of the light as radiation. This process is called fluorescence and is illustrated by the Jablonski energy level diagram (Fig 1). Absorption of light (hv.) causes an electron to be promoted from its electronic ground state (designated as S<sub>a</sub>) to an excited state (usually S<sub>1</sub>). Every energy state has several vibrational energy levels 0, 1, 2 etc. During the lifetime of the excited state, i.e. the time elapsed between excitation of the molecule and emission of the photon (usually between 1-10 ns), part of the energy is lost by internal vibration. As a result, the wavelength of the emitted light (hv<sub>E</sub>) is always longer than that of the exciting light. This phenomenon is called the Stokes shift and allows the detection of emission against a background of light derived from excitation. Usually, the fluorescence excitation spectrum of a fluorophore in a diluted solution is identical to its absorption spectrum and under the same conditions, the fluorescence emission spectrum is independent of the excitation wavelength.

In a diluted solution, fluorescence intensity is linearly proportional to several parameters as deduced from Lambert-Beer's law. These are the molar absorption coefficient. the path length, the intensity of the incident light, and the quantum yield which is the ratio of the number of emitted to the total number of absorbed photons. Fluorescence detection is dependent on the sensitivity of the instrument and is therefore measured in arbitrary units. Higher concentrations of the fluorophore (> 0.1 absorption units) lead to deviations from the linearity due to loss of excitation intensity across the cuvette path length as the excitation light is absorbed by the fluorophore. This phenomenon is known as the inner filter effect. Other effects which influence fluorescence measurements are related to intrinsic or background fluorescence originating from sample preparations and buffer contaminants, respectively. To minimize fluorescence derived from contaminants. it is recommended to use materials of maximum purity.

Fluorescence spectra may also be dependent on the solvent. With some fluorophores, such as 2-acetylanthracene or tryptophan, a spectral shift to longer



wavelengths (bathochromic shift or red shift) is observed in more polar solvents. The fluorescence spectra of fluorophores containing acidic or basic substituents (e.g. AMC) can depend on the pH of the solution.

#### **Fluorescence Quenching**

Any process which decreases the fluorescence intensity of a given substance can be referred to as quenching. Several types of quenching processes can be distinguished. Collisional or dynamic quenching can be considered as a reduction in fluorescence intensity due to a collision of the quencher with the fluorophore in the excited state. Upon contact the fluorophore returns to the ground state without light emission. One of the best known collisional guenchers which quenches almost all known fluorophores is molecular oxygen. It is therefore often required to remove dissolved oxygen to obtain reliable measurements. In static quenching, a non-fluorescent complex is formed between the guencher and the fluorophore. In contrast to both of these quenching processes, FRET does not require contact of the quencher with the fluorophore. The energy transfer occurs without the appearance of a photon.

## Fluorescence Resonance Energy Transfer (FRET)

Fluorescence resonance energy transfer (FRET) is the transfer of the excited state energy of a donor to an acceptor without the emission of light (Fig 2). The energy transfer can be considered as an energy exchange of an oscillating dipole to a dipole with similar

#### Energy



Fig. 1. Energy Level Diagram

resonance frequency. FRET can only take place when the emission spectrum of the donor overlaps with the absorption spectrum of the acceptor.

The donor and acceptor have to be within a distance of 1-10 nm. The energy transfer efficiency depends on the extent of the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor, the relative orientation of the donor and acceptor transition dipoles, and the distance r between donor and acceptor. The energy transfer efficiency decreases exponentially by  $r^6$ . The distance at which the efficiency of energy transfer is reduced by 50 % is a characteristic value for a given donor acceptor pair and is called the Förster distance  $R_0$ .



Fig. 2. Fluorescence Resonance Energy Transfer (FRET)

#### Abz (2-Aminobenzoyl or Anthraniloyl) Substrates

Abz (F) substrates are generally used in combination with a number of quenchers (Q) such as Dnp (2,4-dinitrophenyl), EDDnp (N-(2,4-dinitrophenyl)ethylenediamine), 4-nitro-phenylalanine, or 3-nitro-tyrosine. Substrate cleavage can be detected at 420 nm using an excitation wavelength of 320 nm.

Example: 4043877 Abz-Phe-Arg-Lys(Dnp)-Pro-OH



#### N-Me-Abz (N-Methyl-anthraniloyl) Substrates

N-Me-Abz substrates are generally used with Dnp as quencher (Q). The fluorescent group (F) is either linked to the N-terminal amino group or the ɛ-amino group of a lysine residue. Substrate cleavage can be detected at 440-450 nm using an excitation wavelength of 340- 360 nm.

Example: N-Me-Abz-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH<sub>2</sub>



#### Dansyl (5-(Dimethylamino)naphthalene-1-sulfonyl) Substrates

In a few substrates the fluorescent dansyl group (F) serves as donor with 4-nitro-phenylalanine as acceptor. Substrate cleavage can be assayed at 562 nm using excitation at 342 nm. More commonly the dansyl group is used as a quencher for tryptophan fluorescence.

Example: 4050412 Dansyl-D-Ala-Gly-4-nitro-Phe-Gly-OH



#### DMACA (7-Dimethylaminocoumarin-4-acetyl) Substrates

DMACA (F) can be detected fluorometrically at 465 nm using an excitation wavelength of 350 nm. It can be quenched by NBD (7-Nitro-benzo[2,1,3]oxadiazol-4-yl) (Q).

Example: 4028275 NBD-ɛ-aminocaproyl-Arg-Pro-Lys-Pro-Leu-Ala-Nva-Trp-Lys(DMACA)-NH<sub>2</sub>





#### EDANS (5-[(2-Aminoethyl)amino]naphthalene-1-sulfonic acid) Substrates

In these substrates, the fluorescence of the EDANS group (F) is generally quenched by the DABCYL (4-(4-dimethylaminophenylazo) benzoyl) group (Q). The DABCYL group is usually conjugated to the N-terminus and the EDANS group attached to the C-terminus of the peptide substrate. Substrate cleavage can be detected at 490 nm using an excitation wavelength of 340

Example: DABCYL-Tyr-Val-Ala-Asp-Ala-Pro-Val-EDANS

nm.



#### FITC (Fluorescein isothiocyanate) Substrates

Only few FITC substrates have been described. The FITC label (F) can be quenched with Dnp (Q). Substrate cleavage can be detected at 520 nm using an excitation wavelength of 490 nm.

Example: 4027937 FITC-Tyr-Val-Ala-Asp-Ala-Pro-Lys(Dnp)-OH (contains FITC isomer I)



#### Lucifer Yellow (6-Amino-2,3-dihydro-1,3dioxo-2-hydrazinocarbonylamino-1Hbenz[d,e]isoquinoline-5,8-disulfonic acid) Substrates

Lucifer Yellow (F) can be detected at 520 nm using excitation at 430 nm. It is efficiently quenched by Dabsyl (4-(4-Dimethylaminophenylazo)-benzenesulfonyl) (Q).

Example: H-Lys(Dabsyl)-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Arg-Gln-Lucifer Yellow



#### Mca ((7-Methoxycoumarin-4-yl)acetyl) Substrates

In this kind of substrates Mca (F) is bound to an amino group (usually the N-terminal amino group) of a peptide sequence and quenched by Dnp (Q). The cleaved peptide fragment with the attached Mca group can be detected fluorometrically at 392 nm using an excitation wavelength of 325 nm.

Example: Mca-Leu-Glu-Val-Asp-Gly-Trp-Lys(Dnp)-NH<sub>2</sub>



#### Trp (Tryptophan) Substrates

Tryptophan (F) is a fluorescent amino acid which has been used in a variety of substrates with Dnp as a quencher (Q). Substrate cleavage can be detected at 360 nm using an excitation wavelength of 280 nm.

Example: 4030541 Dnp-Arg-Pro-Leu-Ala-Leu-Trp-Arg-Ser-OH



#### Table 1. Fluorophores

| Fluorophore                                              | Excitation<br>Wavelength* | Emission<br>Wavelength* | References                                       |
|----------------------------------------------------------|---------------------------|-------------------------|--------------------------------------------------|
| Abz                                                      | 320 nm                    | 420 nm                  | Cezari, M.H. et al. (2002); Bourgeois, L. et al. |
| (2-Aminobenzoyl or Anthraniloyl)                         |                           |                         | (1997); Parameswaran, K.N. et al. (1997)         |
| N-Me-Abz                                                 | 340-360 nm                | 440-450 nm              | Bickett, D.M. et al. (1993)                      |
| (N-Methyl-anthraniloyl)                                  |                           |                         |                                                  |
| Dansyl                                                   | 342 nm                    | 562 nm                  | Florentin, D. et al. (1984)                      |
| (5-(Dimethylamino)naphthalene-1-sulfonyl)                |                           |                         |                                                  |
| DMACA                                                    | 350 nm                    | 465 nm                  | Bickett, D.M. et al. (1994)                      |
| (7-Dimethylaminocoumarin-4-acetate)                      |                           |                         |                                                  |
| EDANS                                                    | 340 nm                    | 490 nm                  | Matayoshi, E.D. et al. (1990)                    |
| (5-[(2-Aminoethyl)amino]naphthalene-1-sulfonic acid)     |                           |                         |                                                  |
| FITC                                                     | 490 nm                    | 520 nm                  | Chersi, A. et al. (1990)                         |
| (Fluorescein isothiocyanate)                             |                           |                         |                                                  |
| Lucifer Yellow                                           | 430 nm                    | 520 nm                  | Grüninger-Leitch, F. et al. (2002)               |
| (6-Amino-2,3-dihydro-1,3-dioxo-2-hydrazinocarbonylamino- |                           |                         |                                                  |
| 1H-benz[d,e]isoquinoline-5,8-disulfonic acid)            |                           |                         |                                                  |
| Мса                                                      | 325 nm                    | 392 nm                  | Kondo, T. et al. (1997)                          |
| ((7-Methoxycoumarin-4-yl)acetyl)                         |                           |                         |                                                  |
| Тгр                                                      | 280 nm                    | 360 nm                  | Cezari, M.H. et al. (2002)                       |
| (Tryptophan)                                             |                           |                         |                                                  |

\* the values listed are as reported in the cited literature.



#### Table 2. Donor/Acceptor Pairs

| Donor (Fluorophore)                                       | Acceptor (Quencher)                    | References                    |
|-----------------------------------------------------------|----------------------------------------|-------------------------------|
| Abz                                                       | Dnp                                    | Cezari, M.H. et al. (2002)    |
| (2-Aminobenzoyl or Anthraniloyl)                          | (2,4-Dinitrophenyl)                    |                               |
| Abz                                                       | EDDnp                                  | Andrau, D. et al. (2003)      |
| (2-Aminobenzoyl or Anthraniloyl)                          | (N-(2,4-Dinitrophenyl)ethylenediamine) |                               |
| Abz                                                       | 4-Nitro-Phe                            | Toth, M.V. and G.R. Marshall  |
| (2-Aminobenzoyl or Anthraniloyl)                          | (4-Nitro-phenylalanine)                | (1990)                        |
| Abz                                                       | 3-Nitro-Tyr                            | Breddam, K. and M. Meldal     |
| (2-Aminobenzoyl or Anthraniloyl)                          | (3-Nitro-tyrosine)                     | (1992)                        |
| Abz                                                       | pNA                                    | Stöckel, A. et al. (1997)     |
| (2-Aminobenzoyl or Anthraniloyl)                          | (para-Nitroaniline)                    |                               |
| N-Me-Abz                                                  | Dnp                                    | Bickett, D.M. et al. (1993)   |
| (N-Methyl-anthraniloyl)                                   | (2,4-Dinitrophenyl)                    |                               |
| Dansyl                                                    | 4-Nitro-Phe                            | Florentin, D. et al. (1984)   |
| (5-(Dimethylamino)naphthalene-1-sulfonyl)                 | (4-Nitro-phenylalanine)                |                               |
| EDANS                                                     | DABCYL                                 | Matayoshi, E.D. et al. (1990) |
| (5-[(2-Aminoethyl)amino]-naphthalene-1-sulfonic           | (4-(4-Dimethylaminophenylazo)benzoyl)  |                               |
| acid)                                                     |                                        |                               |
|                                                           |                                        | Bickett, D.M. et al. (1994)   |
| (7-Dimethylaminocoumarin-4-acetate)                       | (7-Nitro-benzo[2,1,3]oxadiazol-4-yl)   |                               |
| FITC                                                      | Dnp                                    | Korting, H.J. et al. (1977)   |
| (Fluorescein isothiocyanate)                              | (2,4-Dinitrophenyl)                    |                               |
| Lucifer Yellow                                            | Dabsyl                                 | Grüninger-Leitch, F. et al.   |
| (6-Amino-2,3-dihydro-1,3-dioxo-2-hydrazinocarbo-          | (4-(4-Dimethylaminophenylazo)-         | (2002)                        |
| nylamino-1H-benz[d,e]isoquinoline-5,8-disulfonic<br>acid) | benzenesulfonyl)                       |                               |
| Mca                                                       | Dnp                                    | Kondo, T. et al. (1997)       |
| ((7-Methoxycoumarin-4-yl)acetyl)                          | (2,4-Dinitrophenyl)                    | Nondo, 1. et al. (1997)       |
|                                                           | Dnp                                    | Cezari, M.H. et al. (2002)    |
| (Tryptophan)                                              | (2,4-Dinitrophenyl)                    | Gezall, M.H. et al. (2002)    |
| Тгр                                                       | 4-Nitro-Z                              | Persson, A. and E.B. Wilson   |
| (Tryptophan)                                              | (4-Nitro-benzyloxycarbonyl)            | (1977)                        |
| () F F                                                    | (                                      | (····/)                       |

# REFERENCES

#### H.J. Korting et al.

Fluorometric determination of the quality of FITC conjugates. Virologie 28, 41-43 (1977)

#### A. Persson and E.B. Wilson

A fluorogenic substrate for angiotensin-converting enzyme. Anal. Biochem. 83, 296-303 (1977)

#### D. Florentin et al.

A highly sensitive fluorometric assay for "enkephalinase", a neutral metalloendopeptidase that releases tyrosine-glycine-glycine from enkephalins.

Anal. Biochem. 141, 62-69 (1984) A. Chersi et al.

Preparation and utilization of fluorescent synthetic peptides. Biochim. Biophys. Acta 1034, 333-336 (1990)

#### E.D. Matayoshi et al.

Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247. 954-958 (1990)

#### M.V. Toth and G.R. Marshall

A simple, continuous fluorometric assay for HIV protease. Int. J. Pept. Protein Res. 36, 544-550 (1990)

#### For further details, please see the following literature references

#### J. Bergmeyer and M. Grassl, eds.

Methods of Enzymatic Analysis, 3rd Edition, Vol. I, Fundamentals Verlag Chemie GmbH, Weinheim (1983)

#### J. Bergmeyer and M. Grassl, eds.

Methods of Enzymatic Analysis, 3rd Edition, Vol. II, Samples, Reagents, Assessment of Results Verlag Chemie GmbH, Weinheim (1983)

#### K. Breddam and M. Meldal

Substrate preferences of glutamicacid-specific endopeptidases assessed by synthetic peptide substrates based on intramolecular fluorescence quenching. Eur. J. Biochem. 206, 103-107 (1992)

#### D.M. Bickett et al.

A high throughput fluorogenic substrate for interstitial collagenase (MMP-1) and gelatinase (MMP-9). Anal. Biochem. 212, 58-64 (1993)

#### D.M. Bickett et al.

A high throughput fluorogenic substrate for stromelysin (MMP-3). Ann. N.Y. Acad. Sci. 732, 351-355 (1994)

#### L. Bourgeois et al.

Serpin-derived peptide substrates for investigating the substrate specificity of human tissue kallikreins hK1 and hK2.

J. Biol. Chem. 272, 29590-29595 (1997)

#### T. Kondo et al.

Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc. Natl. Acad. Sci. U.S.A. 94,

11951-11956 (1997)

#### K.N. Parameswaran et al.

Hydrolysis of gamma:epsilon isopeptides by cytosolic transglutaminases and by coagulation factor XIIIa. J. Biol. Chem. 272, 10311-10317 (1997)

#### A. Stöckel et al.

Specific inhibitors of aminopeptidase P. Peptides and pseudopeptides of 2-hydroxy-3-amino acids. Adv. Exp. Med. Biol. 421, 31-35 (1997)

#### M.H. Cezari et al.

Cathepsin B carboxydipeptidase specificity analysis using internally quenched fluorescent peptides. Biochem. J. 368, 365-369 (2002)

#### F. Grüninger-Leitch et al.

Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases.

J. Biol. Chem. 277, 4687-4693 (2002)

#### D. Andrau et al.

BACE1- and BACE2-expressing human cells: characterization of beta-amyloid precursor protein-derived catabolites, design of a novel fluorimetric assay, and identification of new in vitro inhibitors. J. Biol. Chem. 278, 25859-25866 (2003)

#### J.R. Lakowicz

Principles of Fluorescence Spectroscopy, 3rd Edition Springer, New York (2006)

#### A.K. Carmona et al.

The use of Fluorescence Resonance Energy Transfer (FRET) peptides for measurement of clinically important proteolytic enzymes. Anais da Academia Brasileira de Ciências (Annals of the Brazilian Academy of Sciences) 81, 381-392 (2009)





# FRET SUB-STRATES

FRET Substrates Building Blocks for FRET Substrates 11-15 16-17

For more information on recommendations on the donor/ acceptor pairs in this brochure please see Table 1 and 2 (page 6-7).



## FRET Substrates by Enzyme

| Enzyme                                                                   | Fluorophore / Quencher | Prod. No. |
|--------------------------------------------------------------------------|------------------------|-----------|
| ADAM Protein                                                             |                        |           |
| H-Glu(EDANS)-Lys-Pro-Ala-Lys-Phe-Phe-Arg-Leu-Lys(DABCYL)-NH <sub>2</sub> | EDANS/DABCYL           | 4043075   |
|                                                                          |                        |           |
| Aminopeptidase P                                                         |                        |           |
| H-Lys(Abz)-Pro-Pro-pNA                                                   | Abz/pNA                | 4027668   |
| Angiotensin I-Converting Enzyme (ACE)                                    |                        |           |
| Abz-Phe-Arg-Lys(Dnp)-Pro-OH                                              | Abz/Dnp                | 4043877   |
| Abz-Gly-p-nitro-Phe-Pro-OH                                               | Abz/p-nitro-Phe        | 4003531   |
| Angiotensin-Converting Enzyme 2 (ACE2)                                   |                        |           |
| Abz-Ser-Pro-3-nitro-Tyr-OH                                               | Abz/3-nitro-Tyr        | 4050533   |
| Mca-Ala-Pro-Lys(Dnp)-OH                                                  | Mca/Dnp                | 4042638   |
| Asp-specific Protease                                                    |                        |           |
| Abz-Ala-Phe-Ala-Phe-Asp-Val-Phe-3-nitro-Tyr-Asp-OH                       | Abz/3-nitro-Tyr        | 4035170   |
| Calpain-1                                                                |                        |           |
| H-Glu(EDANS)-Pro-Leu-Phe-Ala-Glu-Arg-Lys(DABCYL)-OH                      | EDANS/DABCYL           | 4050532   |
| Caspase-1                                                                |                        |           |
| FITC-Tyr-Val-Ala-Asp-Ala-Pro-Lys(Dnp)-OH (contains FITC isomer I)        | FITC/Dnp               | 4027937   |
| Mca-Tyr-Val-Ala-Asp-Ala-Pro-Lys(Dnp)-OH                                  | Mca/Dnp                | 4030476   |

## FRET Substrates by Enzyme (continued)

| Enzyme                                                                                                         | Fluorophore / Quencher | Prod. No. |
|----------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| Cathepsin                                                                                                      |                        |           |
| Abz-Gly-Ile-Val-Arg-Ala-Lys(Dnp)-OH                                                                            | Abz/Dnp                | 4049308   |
| Ac-Glu-Asp(EDANS)-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Gly-<br>Lys(DABCYL)-Glu-NH <sub>2</sub>                      | EDANS/DABCYL           | 4030300   |
| Mca-Gly-Lys-Pro-Ile-Leu-Phe-Phe-Arg-Leu-Lys(Dnp)-D-Arg-NH <sub>2</sub>                                         | Mca/Dnp                | 4033156   |
| Mca-Gly-Ser-Pro-Ala-Phe-Leu-Ala-Lys(Dnp)-D-Arg-NH <sub>2</sub>                                                 | Mca/Dnp                | 4049855   |
| Cytomegalovirus (CMV) Protease                                                                                 |                        |           |
| DABCYL-Arg-Gly-Val-Val-Asn-Ala-Ser-Ser-Arg-Leu-Ala-EDANS                                                       | EDANS/DABCYL           | 4030469   |
| Endothelin-Converting Enzyme-1                                                                                 |                        |           |
| Mca-Arg-Pro-Pro-Gly-Phe-Ser-Ala-Phe-Lys(Dnp)-OH<br>(Mca-(Ala <sup>7</sup> ,Lys(Dnp) <sup>9</sup> )-Bradykinin) | Mca/Dnp                | 4029459   |
| Furin                                                                                                          |                        |           |
| Abz-Arg-Val-Lys-Arg-Gly-Leu-Ala-m-nitro-Tyr-Asp-OH                                                             | Abz/3-nitro-Tyr        | 4026550   |
| HCV NS3 Protease                                                                                               |                        |           |
| Ac-Asp-Glu-Asp(EDANS)-Glu-Glu-Abu-L-lactoyl-Ser-Lys(DABCYL)-NH <sub>2</sub>                                    | EDANS/DABCYL           | 4030288   |
| HCV NS3-4A Protease                                                                                            |                        |           |
| Abz-Asp-Asp-Ile-Val-Pro-Cys-Ser-Met-Ser-3-nitro-Tyr-Thr-NH <sub>2</sub>                                        | Abz/3-nitro-Tyr        | 4050440   |



| Fluorophore / Quencher | Prod. No.       |
|------------------------|-----------------|
|                        |                 |
| Abz/p-nitro-Phe        | 4030748         |
| EDANS/DABCYL           | 4030716         |
|                        | Abz/p-nitro-Phe |

| Kallikrein                        |           |         |
|-----------------------------------|-----------|---------|
| Abz-Ala-Phe-Arg-Phe-Ser-Gln-EDDnp | Abz/EDDnp | 4051016 |

## FRET Substrates by Enzyme (continued)

| Enzyme / Substrate                                                                                                                         | Fluorophore / Quencher | Prod. No. |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------|
| MMP                                                                                                                                        |                        |           |
| Abz-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH₂                                                                                               |                        | 4026336   |
| Dnp-Pro-β-cyclohexyl-Ala-Gly-Cys(Me)-His-Ala-Lys(N-Me-Abz)-NH <sub>2</sub>                                                                 | N-Me-Abz/Dnp           | 4025472   |
| 6-(7-Nitro-benzo[2,1,3]oxadiazol-4-ylamino)-hexanoyl-Arg-Pro-Lys-<br>Pro-Leu-Ala-Nva-Trp-Lys(7-dimethylaminocoumarin-4-yl)-NH <sub>2</sub> | DMACA/NBD              | 4028275   |
| DABCYL-γ-Abu-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Glu(EDANS)-<br>Ala-Lys-NH <sub>2</sub>                                                    | EDANS/DABCYL           | 4037518   |
| DABCYL-γ-Abu-Pro-Gln-Gly-Leu-Glu(EDANS)-Ala-Lys-NH₂                                                                                        | EDANS/DABCYL           | 4037519   |
| Mca-Arg-Pro-Lys-Pro-Tyr-Ala-Nva-Trp-Met-Lys(Dnp)-NH <sub>2</sub>                                                                           | Mca/Dnp                | 4030841   |
| Mca-Arg-Pro-Lys-Pro-Val-Glu-Nva-Trp-Arg-Lys(Dnp)-NH <sub>2</sub>                                                                           | Mca/Dnp                | 4030842   |
| Mca-Arg-Pro-Pro-Gly-Phe-Ser-Ala-Phe-Lys(Dnp)-OH                                                                                            | Mca/Dnp                | 4029459   |
| Mca-Lys-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH <sub>2</sub>                                                                                   | Mca/Dnp                | 4028885   |
| Mca-Pro-β-cyclohexyl-Ala-Gly-Nva-His-Ala-Dap(Dnp)-NH <sub>2</sub>                                                                          | Mca/Dnp                | 4038444   |
| Mca-Pro-Leu-Ala-Cys(Mob)-Trp-Ala-Arg-Dap(Dnp)-NH <sub>2</sub>                                                                              | Mca/Dnp                | 4038699   |
| Mca-Pro-Leu-Ala-Nva-Dap(Dnp)-Ala-Arg-NH <sub>2</sub>                                                                                       | Mca/Dnp                | 4040959   |
| Mca-Pro-Leu-Gly-Leu-Dap(Dnp)-Ala-Arg-NH <sub>2</sub>                                                                                       | Mca/Dnp                | 4026036   |
| Mca-Pro-Leu-Gly-Leu-Glu-Ala-Dap(Dnp)-NH <sub>2</sub>                                                                                       | Mca/Dnp                | 4053570   |
| Mca-Pro-Lys-Pro-Leu-Ala-Leu-Dap(Dnp)-Ala-Arg-NH <sub>2</sub>                                                                               | Mca/Dnp                | 4030807   |
| Dnp-Arg-Pro-Leu-Ala-Leu-Trp-Arg-Ser-OH                                                                                                     | Trp/Dnp                | 4030541   |
| Dnp-Pro-Leu-Gly-Leu-Trp-Ala-D-Arg-NH <sub>2</sub>                                                                                          | Trp/Dnp                | 4018011   |
| Neprilysin                                                                                                                                 |                        |           |
| Dansyl-D-Ala-Gly-4-nitro-Phe-Gly-OH                                                                                                        | Dansyl/4-nitro-Phe     | 4050412   |
| Neutral Metalloendopeptidase                                                                                                               |                        |           |
| Abz-Ala-Gly-Leu-Ala-p-nitrobenzylamide                                                                                                     | Abz/p-nitrobenzylamide | 4014232   |

| Papain                                                     |              |         |
|------------------------------------------------------------|--------------|---------|
| Abz-Gln-Val-Val-Ala-Gly-Ala-ethylenediamine-Dnp            | Abz/EDDnp    | 4026185 |
|                                                            |              |         |
| Renin                                                      |              |         |
| DABCYL-y-Abu-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-EDANS | EDANS/DABCYL | 4031169 |



| Enzyme / Substrate                                                       | Fluorophore / Quencher | Prod. No. |
|--------------------------------------------------------------------------|------------------------|-----------|
| SARS Main Protease                                                       |                        |           |
| DABCYL-Lys-Thr-Ser-Ala-Val-Leu-Gln-Ser-Gly-Phe-Arg-Lys-Met-Glu-<br>EDANS | EDANS/DABCYL           | 4045664   |

| β-Secretase                                                                  |              |         |
|------------------------------------------------------------------------------|--------------|---------|
| Abz-Val-Asn-Leu-Asp-Ala-Glu-EDDnp                                            | Abz/EDDnp    | 4045326 |
| Abz-Val-Lys-Met-Asp-Ala-Glu-EDDnp                                            | Abz/EDDnp    | 4045325 |
| H-Arg-Glu(EDANS)-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(DABCYL)-<br>Arg-OH      | EDANS/DABCYL | 4033536 |
| Mca-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Arg-Lys(Dnp)-Arg-Arg-NH <sub>2</sub> | Mca/Dnp      | 4033760 |
| Mca-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(Dnp)-OH                          | Mca/Dnp      | 4029476 |
| Mca-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(Dnp)-NH <sub>2</sub>             | Mca/Dnp      | 4034744 |
| Mca-Ser-Glu-Val-Lys-Met-Asp-Ala-Glu-Phe-Arg-Lys(Dnp)-Arg-Arg-NH <sub>2</sub> | Mca/Dnp      | 4033759 |

| γ-Secretase                                                                             |              |         |
|-----------------------------------------------------------------------------------------|--------------|---------|
| Abz-Gly-Gly-Val-Val-Ile-Ala-Thr-Val-Lys(Dnp)-D-Arg-D-Arg-D-Arg-NH <sub>2</sub>          | Abz/Dnp      | 4043077 |
| N-Me-Abz-Gly-Gly-Val-Val-Ile-Ala-Thr-Val-Lys(Dnp)-D-Arg-D-Arg-D-<br>Arg-NH <sub>2</sub> | N-Me-Abz/Dnp | 4043236 |

| Thimet Oligopeptidase             |         |         |
|-----------------------------------|---------|---------|
| Mca-Pro-Leu-Gly-Pro-D-Lys(Dnp)-OH | Mca/Dnp | 4027687 |
|                                   |         |         |

| TNF-a Converting Enzyme (TACE, ADAM17 endopeptidase)                    |              |         |
|-------------------------------------------------------------------------|--------------|---------|
| Mca-(endo-1a-Dap(Dnp))-TNF-α (-5 to +6) amide (human)                   |              | 4031302 |
| DABCYL-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Ser-Arg-EDANS                    | EDANS/DABCYL | 4031301 |
| H-Arg-Glu(EDANS)-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys(DABCYL)-<br>Arg-OH | Mca/Dnp      | 4033536 |

## **Building Blocks for FRET Substrates**

| Building Block      | Prod. No. |
|---------------------|-----------|
| Dabsyl Derivatives  |           |
| Fmoc-Lys(Dabsyl)-OH | 4050342   |

| Dnp Derivatives             |         |
|-----------------------------|---------|
| Fmoc-Dap(Dnp)-OH            | 4026365 |
| Fmoc-Dap(Dnp)-Sasrin™ resin | 4029525 |
| Fmoc-Lys(Dnp)-OH            | 4026832 |
| Fmoc-D-Lys(Dnp)-OH          | 4027754 |
| Fmoc-Orn(Dnp)-OH            | 4030622 |
| Dnp-Pro-OH                  | 4008147 |

| 4-Nitrophenylalanine (a choice of derivatives) |         |
|------------------------------------------------|---------|
| Boc-p-nitro-Phe-OH                             | 4001953 |
| Boc-p-nitro-D-Phe-OH                           | 4001979 |
| Fmoc-p-nitro-Phe-OH                            | 4010331 |
| Fmoc-p-nitro-D-Phe-OH                          | 4019048 |
|                                                |         |

| 3-Nitro- and 3,5-Dinitrotyrosine |         |
|----------------------------------|---------|
| Fmoc-3-nitro-Tyr-OH              | 4026244 |



| Fluorophores               | Prod. No. |
|----------------------------|-----------|
| Abz                        |           |
| Boc-Abz-OH                 | 4002711   |
| Boc-N-Me-Abz-OH            | 4025576   |
| Fmoc-Abz-OH                | 4028486   |
| Fmoc-Lys(retro-Abz-Boc)-OH | 4027855   |

| Dansyl and EDANS    |         |
|---------------------|---------|
| Fmoc-Lys(dansyl)-OH | 4026510 |
| Fmoc-Asp(EDANS)-OH  | 4049431 |
| Fmoc-Glu(EDANS)-OH  | 4033590 |

| Fluorescein and Rhodamine                                                   |         |
|-----------------------------------------------------------------------------|---------|
| 5-Carboxy-fluorescein                                                       | 4045141 |
| 6-Carboxy-fluorescein                                                       | 4045142 |
| 5(6)-Carboxy-tetramethylrhodamine (TAMRA)<br>(used in combination with FAM) | 4045146 |

| Мса                                          |         |
|----------------------------------------------|---------|
| (7-Methoxycoumarin-4-yl)acetic acid (Mca-OH) | 4026019 |
| Fmoc-β-(7-methoxy-coumarin-4-yl)-Ala-OH      | 4046868 |

| Tryptophan (a choice of derivatives) |         |
|--------------------------------------|---------|
| Boc-Trp-OH                           | 4000240 |
| Boc-Trp(For)-OH                      | 4001264 |
| Fmoc-Trp-OH                          | 4003185 |
| Fmoc-Trp(Boc)-OH                     | 4017674 |

#### **FRET Substrate Cleavage Products**

| Cleavage Product | Substrate                            | Prod. No. |
|------------------|--------------------------------------|-----------|
| Abz-Gly-OH · HCl | Abz-Gly-p-nitro-Phe-Pro-OH (4003531) | 4015644   |

#### **Custom Peptide Synthesis**

- A strong commitment to quality is the basis of our long-standing market leadership
- Almost 50 years of peptide experience with facilities in the USA and Europe
- Highly motivated and experienced team to help with your sequence design and modifications
- Capacity to produce short to complex peptides from mg to multi-kg and beyond
- Cited as source in over 13,000 world wide science publications (Highwire Press, www.highwire.org)

Although Bachem offers a variety of FRET substrates and related compounds from stock as catalog products, your project may require a substrate not listed in our catalog. Take advantage of our expertise and contact our custom peptide service at www.bachem.com Our experts will support you with the design of your substrate.



# **PRODUCT BROCHURES**





#### **Marketing & Sales Contact**

#### Americas

Bachem Americas, Inc. Tel. +1 888 422 2436 (toll free in USA & Canada) +1 310 539 4171 sales.us@bachem.com

#### Asia Pacific

Bachem Japan K.K. Tel. +81 3 6661 0774 sales.jp@bachem.com

Europe, Africa, Middle East and India Bachem AG Tel. +41 58 595 2020 sales.ch@bachem.com

Visit our website www.bachem.com or shop online shop.bachem.com

All information is compiled to the best of our knowledge. We cannot be made liable for any possible errors or misprints. Some products may be restricted in certain countries.





www.bachem.com

shop.bachem.com